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Abstract

A mathematical model is developed for calculating the temperature of the soil and air in a soil heat exchanger for

ventilation systems. The model is based on the representation of temperature in the form of the Fourier integral. For

high-frequency components with characteristic times of the order of 24 h an exact analytical solution is used. Calcu-

lation of low-frequency components with characteristic times of the order of a year is based on simulation of a tube by a

linear heat source. The degree of decrease in the efficiency of the heat exchanger with decrease in the spacing between its

tubes is evaluated. The dependences of the thermal power of the system on the length and diameter of the tubes, depth

of their burial and air flow rate are calculated. An analytical expression is obtained for the optimum length of the tube.

The evolution of the thermal power of the system during its operation for 10 years only in the winter period is cal-

culated. The results of calculations are compared with experimental data. The procedure developed does not require

cumbersome calculations and can be used for working out design recommendations. � 2002 Elsevier Science Ltd. All

rights reserved.

1. Introduction

One of the means of reducing expenditures of en-

ergy for sustaining the required microclimate in resi-

dential buildings, greenhouses, vegetable storehouses

and industrial rooms consists in the use of the thermal

energy of the soil of the surface layers of the Earth. A

soil heat exchanger is a system of tubes buried in soil at

a depth of 2–5 m through which outer air is pumped

before its entry into the ventilation system. The tem-

perature of the soil at these depths varies little and lies

within 2–10 �C. This makes it possible to warm up air

in winter and to cool it in summer [1,2]. Experimental

soil heat exchanger–storage systems are used in many

countries [1–6]. However, despite the practical impor-

tance of the problem, the number of works devoted to

the development of engineering methods of calculation

of the output air temperature and of the temperature

field in soil at different time instants is very few. When

air passes through tubes, the soil changes its tempera-

ture, and this, in turn, influences the air temperature,

therefore it is necessary to carry out simultaneous

calculation of the soil temperature and of the air

temperature in a tube. The majority of the well-known

approaches are based on numerical integration of the

equation of heat conduction in soil [4,6–10]. To be

implemented, they require large expenditures of com-

putational time. Thus, for example, in [4] calculation of

one variant of the operation of a system for 3 days

took from 20 to 100 min on IBM SP2. These methods

are not always suitable for engineering calculations,

especially in those cases where the time of operation of

a system is of the order of several years, or where many

variants are to be considered, and an optimum variant

is to be chosen.

In the present work we consider a rapid and relatively

simple, and at the same time rather rigorous, method of

evaluating the temperature of the air leaving a soil heat

exchanger; this method allows one to find the charac-

teristics of the soil heat exchanger with relatively small

computational expenditures.
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2. Governing equations

Let us introduce a rectangular coordinate system

with the origin on the surface of the ground with the z-

axis directed into the ground and y-axis parallel to

horizontally laid tubes. We assume that the ground is

characterized by homogeneous time-independent ther-

mophysical properties. The considered system of equa-

tions includes the heat conduction equation

oT=ot ¼ vDT ð1Þ

with the boundary condition on the ground surface,

approximately taking into account radiative and

convective mechanisms of heat exchange with the

Nomenclature

c specific heat of ground

ca specific heat of air

d space between tubes

G unperturbed temperature of soil

h ratio of heat exchange coefficient at the

soil–atmosphere interface to thermal

conductivity of soil

K0 modified Bessel function of the second

kind

l radius of thermal effect, l �
ffiffiffiffiffiffiffiffiffiffiffi
2v=x

p
L length of a tube

Lsat length of a tube at which the amplitude

of air temperature vibration is decreased

e times in comparison with the initial one

�nn unit vector of external normal to the tube

surface

Nu Nusselt number

Pr Prandtl number

q ratio of heat flux from tube length unit to

heat capacity of soil volume unit

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q
distance from tube axis to the point

considered

R tube radius

Re Reynolds number

S function defined by Eq. (45)

t time

T temperature of soil

Ta air temperature averaged over tube section

Tw tube wall temperature averaged over its

perimeter

T � equivalent temperature of outer air
�TT mean annual temperature of outer air and

soil

v air velocity averaged over tube section

x Cartesian coordinate oriented

horizontally, perpendicularly to the

register of tubes

y Cartesian coordinate oriented horizontally

in parallel with the register of tubes in the

direction of air flow

z Cartesian coordinate directed vertically

downward

Greek symbols

a ratio of the coefficient of heat exchange

between air and a tube to heat capacity of

soil volume unit

b reciprocal length of temperature

relaxation of air in a tube defined by Eq. (7)

v thermal diffusivity of soil

d tube wall thickness

q soil density

qa air density

e function defined by Eq. (14)

/ phase of oscillations of unperturbed soil

temperature

u phase shift in air temperature oscillations

over length of a tube

c increment of decay in air temperature

oscillations

g excess of tube wall temperature over the

temperature of nonperturbed ground at

the depth of tube burial, g ¼ Tw � Gðt; z0Þ
ka thermal conductivity of air

kw thermal conductivity of tube material

n angle between the direction to the point

considered and z-axis

# excess of air temperature over the

temperature of nonperturbed ground at

the depth of tube burial, # ¼ Ta � Gðt; z0Þ
x circular frequency

X circular frequency

W phase of temperature oscillations

D Laplace operator

DT1 amplitude of daily fluctuations of input air

temperature

DT2 amplitude of seasonal fluctuations of input

air temperature

DT3 amplitude of temperature fluctuations

defined by Eq. (57)

Subscripts

a refers to air

g refers to ground

w refers to tube wall

x denotes Fourier component

0 refers to tube axis

1 denotes daily period

2 denotes annual period
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atmosphere and also heat losses for moisture evapora-

tion [11]:

oT=ozjz¼0 ¼ hðT � T �ðtÞÞjz¼0; ð2Þ

where h is the ratio of the generalized coefficient of heat

exchange to the thermal conductivity of soil, T �ðtÞ is the

equivalent air temperature. On the walls of the tubes the

heat flux to the soil is prescribed:

�vð ~rrT 
~nnÞjwall ¼ qðt; yÞð2pRÞ�1
; ð3Þ

where ~nn is the outer normal to the surface of a tube,

R is its radius, qcq is the heat flux from the tube unit

length:

qðt; yÞ ¼ a½Taðt; yÞ � Twðt; yÞ�; ð4Þ

where Taðt; yÞ is the tube section-mean air temperature,

Twðt; yÞ is the tube wall temperature mean over its pe-

rimeter. It follows from Eqs. (3) and (4) that a heat flux

from each of the tubes is isotropic (constant over the

tube perimeter). This assumption can be violated in the

case of shallow burials and when the spacing between

the tubes is small. Evaluations from the formulas given

in [12] show that with the diameters of tubes of 0.1–0.3

m and burial depths of 2–5 m, which are typical of soil

heat exchangers, the nonisotropicity of the heat flux

from a solitary tube can be neglected. As regards the

account for the finiteness of spacing between tubes, the

approximation of the isotropy of the heat flux makes it

possible to evaluate only the initial stage of thermal

mutual effect of tubes, when the violation of the isot-

ropicity is still small.

The equation for the air temperature can be repre-

sented in the form

oTaðt; yÞ=oy ¼ �ðb=aÞqðt; yÞ: ð5Þ

The coefficients a and b have the following forms:

a ¼ fqc=pNuka þ dqc=2pRkwg�1
; ð6Þ

b ¼ Nuva=R
2v; ð7Þ

where v is the rate of pumping, d is the tube wall

thickness, k is the thermal conductivity (the subscripts a

and w denote air and the wall of the tube), Nu is the

Nusselt number, which in the case of turbulent flow is

approximately equal to [13]

Nu ¼ 0:023Re0:8 Pr0:4;

where Re and Pr are the Reynolds and Prandtl numbers.

We will seek the temperature of the ground in the

form of the sum of the unperturbed temperature of the

ground G and the perturbation U caused by the effect of

the heat exchanger:

T ¼ Gþ U ; ð8Þ

where G obeys the equation

oG=ot ¼ vo2G=oz2 ð9Þ

subject to the boundary condition

oG=ozjz¼0 ¼ hðG� T �ðtÞÞjz¼0: ð10Þ

Substituting Eq. (8) into Eqs. (1)–(5) and taking into

account Eqs. (9) and (10), we obtain the equation for the

perturbed temperature of the ground:

oU=ot ¼ vDU ð11Þ

with the boundary conditions on the ground surface:

oU=ozjz¼0 ¼ hU jz¼0 ð12Þ

and on the walls of the tubes:

�vð ~rrU 
~nnÞjwall ¼ qðt; yÞð2pR�1Þ þ e; ð13Þ

where

e ¼ vð ~rrG 
~nnÞjwall; ð14Þ

qðt; yÞ ¼ a½#ðt; yÞ � gðt; yÞ�; ð15Þ

#ðt; yÞ and gðt; yÞ are the excesses of the temperatures of

air and of the tube wall over the unperturbed soil tem-

perature at the depth of tube burial. The equation for

the air temperature is

o#ðt; yÞ=oy ¼ �ðb=aÞqðt; yÞ: ð16Þ

The solution of Eq. (9) subject to boundary condition

(10) leads to the following expression for the unper-

turbed temperature of the ground [14]:

Gðt; zÞ ¼ ð2pÞ�1

Z
GxðzÞ expðixtÞdx; ð17Þ

where

GxðzÞ ¼ Gxð0Þ exp
�
� z

ffiffiffiffiffiffiffiffiffiffiffi
x=2v

p �
exp

�
� iz

ffiffiffiffiffiffiffiffiffiffiffi
x=2v

p
� i/x

�
; ð18Þ

Gxð0Þ and /x are the amplitude and phase of the ground

surface temperature fluctuations:

Gxð0Þ ¼ T �
xh h

��
þ

ffiffiffiffiffiffiffiffiffiffiffi
x=2v

p �2

þ x=2v

��ð1=2Þ

; ð19Þ

/x ¼ arctg
ffiffiffiffiffiffiffiffiffiffiffi
x=2v

p
h

��
þ

ffiffiffiffiffiffiffiffiffiffiffi
x=2v

p ��1
�
; ð20Þ

T �
x is the Fourier-component of the temperature T �ðtÞ.

3. Method of calculation

The system of Eqs. (11)–(16) has no analytical solu-

tion. A large number of approximate methods of solving

the system of Eqs. (11)–(15), used for calculating the

nonstationary temperature field in the soil at a given air
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temperature in the tube, were developed in studying the

thermal conditions of oil- and gas-pipes [12,15–20].

For the case of large depths of tube burial, where the

effect of the ground–atmosphere interface and nonuni-

formity of the unperturbed temperature of the ground

can be neglected, an exact solution of the system of

Eqs. (11), (13)–(16) was obtained for e ¼ 0 in [21] by the

Laplace transformation method. However, its numerical

implementation turned out to be rather complex and

approximate methods of solving this problem were

suggested [22,23].

In the present work, the calculation of the tempera-

ture of the air leaving the heat exchanger is carried out

with the aid of the Fourier transformation method.

Generally speaking, the Fourier transformation method

can be applied for calculating the characteristics of a

heat exchanger at any times of the beginning of the

operation of the system and in the case of an arbitrary

dependence of the input air temperature on time. But it

is especially convenient for engineering evaluations of

the efficiency of the system at the stage of design. The

thing is that in the Fourier-spectra of the fluctuations of

both the temperature of the unperturbed soil and the

temperature of the atmospheric air entering the heat

exchanger, there are two intense maxima at the fre-

quencies of the order of reciprocal 24 h and reciprocal

year with a trough between them. Therefore, at the stage

of design it is often sufficient to represent the tempera-

ture of the soil and the temperature of the input air in

the form of the sum of two sinusoids with the daily and

annual periods and to limit ourselves to the consider-

ation of the steady regime of operation of the heat ex-

changer. In this case, the temperature of the air leaving

the heat exchanger is also the superposition of two

harmonics with the amplitudes and phases which are to

be determined.

In the case of the arbitrary dependence of the input

air temperature on time we will subdivide conventionally

the air temperature and the perturbed temperature of

the soil into high- and low-frequency components with

characteristic timescales of 24 h and min (t, year), where

t is the time of operation of the system (t � 24 h). This

division is associated with different means of evaluation

of the Fourier-components for different frequencies. For

high-frequency Fourier components an exact solution is

formed, whereas for the region of low frequencies an

approximate expression is found which is based on the

model of a linear source [14].

3.1. High-frequency component

The radius of the effect, l �
ffiffiffiffiffiffiffiffiffiffiffi
2v=x

p
, of the heat

source that sends into the soil a heat flux that depends

harmonically on time and has the frequency

x ¼ X1 ¼ 7:3 � 10�5 s�1 that corresponds to the daily

period is approximately 7–15 cm for typical soils with

v ¼ ð2:5–10Þ � 10�7 m2=s [24]. The indicated value is

much lower for both typical depths of burial and lengths

of pipes (more than 10 m) and the spacing between them

(1–2 m). This makes it possible to ignore the thermal

interaction of the pipes and also the influence of the

ground–atmosphere interface. Moreover, it follows from

Eqs. (18)–(20) that at the depths exceeding 1 m, when

x � X1, it is possible to assume that Gx ¼ 0. As a result,

we arrive at the problem of a single tube in an infinite

uniform space. Moreover, we may assume that the air

temperature in the tube and, consequently, also the

temperature of the soil do not change in the direction of

the y-axis at the distances of the order of the influence

radius l. Therefore, it is possible to ignore the longitu-

dinal (along the tube) heat flux in the soil in comparison

with the transverse one. We also assume that the

pumping rate is independent of time. Taking into ac-

count the foregoing and going over to a cylindrical co-

ordinate system, we obtain from Eqs. (11), (13)–(15) the

following system of equations for the high-frequency

components of the soil and air temperatures for each of

the tubes:

ixUx ¼ v
1

r
o

or
r
oUx

or
; ð21Þ

�voUx=orjr¼R ¼ qxðyÞð2pRÞ�1
; ð22Þ

qxðyÞ ¼ a½#xðyÞ � gxðyÞ�; ð23Þ

o#xðyÞ=oy ¼ �ðb=aÞqxðyÞ: ð24Þ

The solution of Eq. (21) with account for condition

(22) for the Fourier-component of the soil temperature

at the distance r from the tube axis has the form

Uxðr;yÞ¼�qxðyÞð2pvÞ�1K0

ffiffi
i

p
D

� � ffiffi
i

p
P

� �

K 0

0

ffiffi
i

p
P

� �h i�1

;

ð25Þ

where K0 is the modified Bessel function of the second

kind, R is the tube radius

D ¼ r 

ffiffiffiffiffiffiffiffiffi
x=v

p
; P ¼ R 


ffiffiffiffiffiffiffiffiffi
x=v

p
: ð26Þ

Substituting UxðR; yÞ ¼ gxðyÞ into Eq. (23), we find the

coupling between the heat flux and the air temperature:

qxðyÞ ¼ að1 þ SxÞ�1#xðyÞ; ð27Þ

where

Sx ¼ �að2pvÞ�1K0

ffiffi
i

p
P

� � ffiffi
i

p
P

� �

 K 0

0

ffiffi
i

p
P

� �h i�1

: ð28Þ

As a result, we arrive at the following equation for the

Fourier-component of the temperature of the air that in

the tube covered the path of length y:

o#xðyÞ=oy ¼ �bð1þ SxÞ�1
#xðyÞ: ð29Þ
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Its solution has the form

#xðyÞ ¼ #xð0Þ exp½�ðcx þ iuxÞy�; ð30Þ

where

cx ¼ Re½bð1þ SxÞ�1�; ux ¼ �Im½bð1þ SxÞ�1�; ð31Þ

The temperature itself is defined by the expression

#ðt; yÞ ¼ ð2pÞ�1

Z
#xðyÞ expðixtÞdx: ð32Þ

In particular, if air of temperature

#ðt; 0Þ ¼ DT 
 cosXt ð33Þ

is supplied to the tube inlet beginning from the zero time

instant, then after the time of the order X�1 steady op-

erational conditions are developed, and the temperature

of the air that in the tube covered the path of length y is

defined by the expression

#ðt; yÞ ¼ DT expð�cXyÞ cosðXt þ uXyÞ: ð34Þ

Similarly, an expression for the temperature of the soil

can be obtained with the aid of Eqs. (25), (27) and (30).

The aforegoing solution makes it possible to evaluate

the accuracy of the approximation of a volumetric source

which is often used for calculating the temperature of the

soil. Its essential idea is that the region occupied by the

tube is replaced by the soil in which there are volumetric

heat sources with the power equal to that emitted by the

tube. The wall temperature is identified with the temper-

ature of the soil at the boundary of the region indicated.

The situations were considered when heat release was

concentrated entirely on the straight line coinciding with

the tube axis (linear source [14]) and on the cylindrical

surface coinciding with the tube surface (cylindrical sur-

face source [14]). Analytical solutions for these cases differ

from the solution given for the tubeonly by the formof the

expressions for Sx (28). For the model of a linear source

Sx ¼ ða=2pvÞK0

ffiffi
i

p
P

� �
: ð35Þ

This expression can be obtained similarly to Eq. (28) if

in Eq. (25) we assume that R ! 0 and take into account

that [25]

zK 0
0ðzÞ ! �1 when z ! 0: ð36Þ

For the model of a cylindrical source, which is the su-

perposition of linear sources on a cylindrical surface of

radius R, we have

Sx ¼ ða=2pvÞK0

ffiffi
i

p
P

� �
I0

ffiffi
i

p
P

� �
; ð37Þ

where I0 is the modified Bessel function.

As seen from Fig. 1, in the case of harmonic fluctu-

ations of the input temperature with the daily period the

wall temperature amplitudes calculated by the model of

the linear and cylindrical source, differ from the exact

one by 30% for a tube of diameter 23 cm, however, the

model of the linear source leads to a larger shift of the

phase relative to the exact solution. We note that the

model used in numerical calculations of daily variations

of temperature and which represents a source uniformly

distributed over the tube section [4] must give an error

that lies between the above considered extreme cases of

the models of the linear and cylindrical source. The

higher the accuracy of the model approximations is

the more slowly the input temperature changes and the

smaller is the diameter of the tube. As seen, in particular,

from Fig. 1(b), the accuracy is equal to several percent

for characteristic times of the change in the input tem-

perature of air of the order of several days for the di-

ameters of tubes of the order of 0.1–0.3 m. Therefore,

the low-frequency components of the temperature with

characteristic times much longer than 24 h can be con-

sidered in the approximation of the volumetric, in par-

ticular, linear or cylindrical source.

3.2. Low-frequency component

The radius of the influence l �
ffiffiffiffiffiffiffiffiffiffiffi
2v=x

p
at the fre-

quency x ¼ X2 ¼ 2� 10�7 s�1 corresponding to the

Fig. 1. Excess of the tube wall temperature over the back-

ground temperature of soil at a distance of 23 m from the en-

trance. The tube diameter is 23 cm, air flow rate 407 m3=h. The

temperature of the entering air was prescribed by formula (33)

with DT ¼ 10 �C and the frequency X corresponding to the

period equal to (a) a day, (b) 5 days. Solid line, exact calculation

by (28), (30)–(32); solid thin line, the model of the cylindrical

source; dashed line, of linear one.
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yearly period is equal approximately to 1.5–3 m. This

distance is commensurable with the depths of burial of

tubes and may considerably exceed the distance between

them. Therefore, in the case of low frequencies the

thermal interaction of tubes may turn to be substantial.

Moreover, in calculation of the low-frequency compo-

nents of the temperature of the soil, especially of its

surface layers, it is generally necessary to take into ac-

count boundary condition (12) on the ground surface.

However, it is shown below that the influence of the

ground–atmosphere on the thermal power of the system

for the conditions of interest for us is usually small.

One other factor, a priori insignificant in the region

of high frequencies but requiring evaluation in the case

of low frequencies is the nonuniformity of the unper-

turbed temperature of the ground that leads to the ap-

pearance of the additional term (14) in boundary

condition (13). We will consider for simplicity a heat

exchanger consisting of one tube. From expression (13)

it is seen that the influence of the unperturbed soil

temperature nonuniformity is equivalent to a certain

additional heat flux from the tube. Evaluating the inte-

gral from the heat flux through the surface of unit length

of the tube with the aid of the Ostrogradskii–Gauss

theorem and thereafter using the heat conduction

equation, we find

dqx �
Z

v½ ~rrG 
~nnÞjwall dS ¼ v
Z

DGx dV � ixGxpR2:

ð38Þ

Substituting expression (18) into (38), we obtain

dqx � ixpR2Gxð0Þ

exp
n
� ð1þ iÞz0

ffiffiffiffiffiffiffiffiffiffiffi
x=2v

p
� ið/x � p=4Þ

o
: ð39Þ

To evaluate the heat flux, we assume that the tube is

long enough, so that it is possible to neglect the longi-

tudinal component of flow at a rather large depth z0, so
that conditions on the surface of the soil do not influence

heat exchange between the air and the soil. In this case,

the results of the previous section are valid and, as seen

from (27) and (35), the flux can be presented in the form

qx ¼ a#x= 1
h

þ ða=2pvÞK0 R
ffiffiffiffiffiffiffiffiffiffi
ix=v

p� �i
: ð40Þ

Taking into account that [25]

K0ðzÞ ! � lnðz=2Þ for z ! 0; ð41Þ

we obtain

jdqx=qxj � jGxð0Þ=#xj ð2pv=aÞ
h

� ln R
ffiffiffiffiffiffiffiffiffiffiffi
x=4v

p� �i
� R2ðx=2vÞ exp

n
� z0

ffiffiffiffiffiffiffiffiffiffiffi
x=2v

p o
: ð42Þ

This quantity may serve as a measure of the error in

calculation of the thermal power of the system intro-

duced by the ignorance of the nonuniformity of the

unperturbed temperature of the soil. Calculations show

that the indicated error increases with increase in the

tube diameter and decrease in the rate of pumping. In

one of the most unfavorable cases with v ¼ 0:5 m/s and

2R ¼ 0:5 m for x ¼ X2 this error at jGxð0Þ=#xj ¼ 1 is

approximately equal to 3% at a depth of 1.5 m and

decreases exponentially with increase in the depth of

burial. Thus, calculation of the thermal power of the soil

heat exchanger can be performed with sufficient accu-

racy without account for the nonuniformity of the un-

perturbed temperature of the soil by discarding the

second term on the right-hand side of (13).

Now, let us pass to the evaluation of the ground–

atmosphere interface.As shownabove, the low-frequency

components of the temperature with characteristic times

much greater than 24 h can be calculated in the ap-

proximation of a volumetric surface. The use of the

indicated approximation makes it possible to reduce

the problem (11)–(13) with a boundary condition on the

tube surface to Eq. (11) modified by addition of a vol-

umetric source, and to the boundary-value condition

(12). This, in turn allows one to obtain an expression for

a low-frequency component of the temperature of the

soil with the aid of the Green’s function in quadratures

and to avoid numerical integration of the heat conduc-

tion equation. In this case boundary condition (12) can

be taken into account by the method of fictitious sources

[26]. The model of a linear source for the case of a single

tube leads to the following expression for the soil tem-

perature exceeding its background value:

Uðx; y; z; tÞ

¼
Z t

�1
ds½4pv 
 ðt � sÞ��3=2

Z L

0

dy0qðs; y0Þ


 exp
h
� ðy � y0Þ2½4v 
 ðt � sÞ��1

i
� exp

h
� r2½4v 
 ðt � sÞ��1

i
� 1
n

þ exp
h
� ðrzþ 4zz0Þ½4v 
 ðt � sÞ��1

i
ð1� 2 
 SÞ

o
;

ð43Þ

where

r2 ¼ ðx� x0Þ þ ðz� z0Þ; ð44Þ

S¼
Z 1

0

dp 
 expf�p�½2ðzþ z0Þphþp2�½4vh2 
 ðt� sÞ��1g:

ð45Þ

Expression (43) takes into account both the transverse

and longitudinal heat fluxes. It is valid at arbitrary

lengths of tubes and takes into account the boundary

condition (12) on the ground surface.

Expression (43) at r ¼ R for the tube wall tempera-

ture together with equality (15) and the equation for the
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air temperature in a tube (16) forms the initial system of

equations for a low-frequency component of the tem-

perature of air and soil. Its numerical solution can be

performed with relatively large time-steps, and this al-

lows one to calculate the evolution of the system over a

large interval, up to several years.

The influence of boundary conditions on the thermal

power of the soil heat exchanger will be evaluated for

two extreme values of the coefficient of heat exchange on

the interface between the ground and the atmosphere:

h ¼ 10�5 m�1 and h ¼ 105 m�1. Fig. 2 presents the de-

pendences of the peak values of thermal power on the

burial depth of tubes at the indicated values of the

constant h of the interaction of the ground surface with

the surrounding medium. The temperature of the air at

the inlet changed harmonically with yearly period. It is

seen that beginning from the depths of the order of 2 m,

the difference between the thermal powers at the extreme

values of the constant h becomes negligibly small which

means the absence of the dependence of thermal power

on the boundary conditions on the ground surface. This

means that the influence of fictitious sources on the

temperature of the soil in the region of the tube can be

neglected assuming the expression in braces in expres-

sion (43) equal to unity at the values of s making the

main contribution to the integral. Thus, if the depths of

burial of the tubes exceed 2 m, from the viewpoint of

calculation of the thermal power of a heat exchanger the

soil can be considered as a homogeneous infinite me-

dium with time-dependent unperturbed temperature at

the depth of the burial of the tubes. This value can be

taken from the data of field measurements. Taking into

account boundary condition (12) may turn out to be

important for estimating the temperature of the surface

layers of the ground. It is also seen from this figure that

the maximum heat powers are attained at depths of the

order of 5 m.

The approach based on the use of expression (43) at

rather large burial depths z0 of the tube (virtually larger

than 2 m) naturally agrees with the above-considered

case of long tubes L �
ffiffiffiffiffiffiffiffiffiffiffi
2v=x

p
. If at the length of ap-

proximately
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v=X2

p
the heat flux qðs; y0Þ changes little,

it can be taken equal to qðs; yÞ, i.e., to the value in the

maximum over the y0 integrand function and for

L �
ffiffiffiffiffiffiffiffiffiffiffi
2v=x

p
it can be integrated in (43) over y0 in infinite

limits. Further in expression (43) we neglect the contri-

bution of fictitious sources and obtain

Uðx; y; z; tÞ

¼
Z t

�1
ds½4pvðt � sÞ��1qðs; yÞ exp½�r2½4vðt � sÞ��1�:

ð46Þ

Passing in (46) to the integration variable n ¼ t � s and

representing qðt � s; yÞ in the form of the Fourier inte-

gral, we find that the determined Fourier component of

(46) is equal to

Uxðr; yÞ ¼ qxðyÞð2pvÞ�1K0ð
ffiffi
i

p
DÞ; ð47Þ

With (36) taken into account, this coincides with the

limit of low frequencies of expression (25).

Table 1 lists peak values of the low-frequency com-

ponent of the power as functions of the tube length. The

values are calculated for the minimum frequency x ¼ X2

in two ways: from (43), (15) and (16) and from (34),

(30)–(32), and (35). From the data of the table it follows

that calculation of heat exchangers whose tubes are

longer than 10 m, i.e., actually with all of the tubes of

practical interest can be carried out by formula (34) with

an accuracy not worse than 5%. The error decreases with

increase in frequency. Thus, when the depths of burials

z0 are larger than 2 m and the tubes are longer than 10

Fig. 2. Amplitude of seasonal average daily fluctuations of the

heat power of a heat exchanger depending on the depth of

burial of a tube at different values of the heat exchange coeffi-

cient on the soil-atmosphere interface: (1) h ¼ 10�5; (2)

h ¼ 105 m�1. Tube length 23 m, diameter 0.23 m, air flow rate

1500 m3=h.

Table 1

Amplitudes of seasonal average daily fluctuations of the heat power of a heat exchanger (W) calculated by different methods as

functions of tube length. Tube diameter 0.23 m, air flow rate 407 m3=h, burial depth 4 m

Tube length, m 2.5 5.0 10.0 15.0 20.0

Calculation by Eq. (43), (15) and (16) 98.1 175.2 319.7 454.4 578.3

Calculation by Eq. (34), (30)–(32) and (35) 80.3 157.7 304.3 440.5 567.2
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m, the results obtained for high frequencies in the case of

one tube are also valid for low frequencies.

Let us consider now thermal interaction of a system

of many tubes using as a basis the model of a linear

source and the results obtained for high frequencies. For

simplicity we restrict ourselves to the case of an infinitely

large set of identical horizontal, parallel d-spaced tubes.

Here, the distributions of the heat flux, temperatures of

air and walls along the tube length are identical for all

the tubes. The heat flux q=2pR defined by expression (13)

for e ¼ 0 is assigned on the side surface of each tube. In

passing to the model of a linear source we assume that

on the axis of the volume of the soil which replaced the

tube the heat of power q is evolved, so that in the quasi-

stationary regime (for R
ffiffiffiffiffiffiffiffiffiffiffi
2x=v

p
� 1) the same heat flux

q, as in the case of a tube, emerges through the surface of

radius R.

The Fourier-component of the temperature field

created by one linear source has the form of (47). Ac-

cording to the superposition principle, the temperature

created by many sources is equal to

Uxðr; yÞ ¼ qxðyÞð2pvÞ�1

�
Xn¼1

n¼�1
K0

ffiffiffiffiffiffiffiffiffiffi
ix=v

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðndÞ2 � 2ndr sin n

q� �
;

ð48Þ

where r is the distance from the axis of the tube with the

number n ¼ 0 to the considered point in the plane

ðx; zÞ; n is the angle between the direction to the con-

sidered point and z-axis. Taking into account the fact

that the spacing between the tubes greatly exceeds their

radius

R � d; ð49Þ

we substitute the expression for UxðR; yÞ into (15) and

obtain Eq. (29) but with the expression for Sx differing

from that in Eq. (30):

Sx ¼ ða=2pvÞ K0 R
ffiffiffiffiffiffiffiffiffiffi
ix=v

p� �(
þ 2

X1
n¼1

K0 nd
ffiffiffiffiffiffiffiffiffiffi
ix=v

p� �)
:

ð50Þ

A further derivation of the expression for the tempera-

tures of air and soil is similar to the expressions in

Section 3.1. As a result, we obtain that the temperature

of the air that passed through the tube the path of length

y is determined by expression (30) with the redefined

expression for Sx (50).

3.3. Joining of solutions

Thus, we have expressions (30)–(32) to evaluate the

exit temperature of air at all the values of frequencies.

They are based on explicit account for the fact that all

the tubes are long ðL �
ffiffiffiffiffiffiffiffiffiffiffi
2v=x

p
Þ and that from the point

of view of calculation of the heat power of the heat

exchanger the nonperturbed ground can be considered

as a homogeneous infinite medium with the temperature

equal to the temperature at the depth of the burial of

tubes. The speed of air pumping is independent of time.

The quantity Sx entering into expressions (30)–(32) is

defined by expression (28) for high frequencies and by

expression (50) for low ones. When natural condition

(49) is satisfied, there is an intermediate region of fre-

quencies where both limits are valid, and this ensures

smooth joining of solutions. In the intermediate region

indicated expressions (28) and (50) virtually coincide;

they describe a single tube in the linear source approx-

imation.

In fact, expression (28) is transformed into expression

(35), which corresponds to the linear source approxi-

mation when

x < 2v=R2: ð51Þ

It is at these frequencies that expression (50) is valid. It is

possible to neglect the thermal interaction of tubes and

treat them as single ones when

x > 2v=d2: ð52Þ

Consequently, in the range of the frequencies that satisfy

the inequality

2v=R2 > x > 2v=d2; ð53Þ

expressions (28) and (50) are joined. Thus, expressions

(30)–(32) together with (28) and (50) give the full Fou-

rier-spectrum of the temperature at all the values of

frequencies and can be used to calculate the exit tem-

perature and heat power of the heat exchange with tubes

at burials deeper than 2 m.

4. Method of rapid evaluation of the air temperature

As a rule, for engineering evaluations at the stage of

design, it is sufficient to know only the parameters of the

stationary regime for the simplest dependence of the

inlet air temperature and nonperturbed temperature of

the ground at the depth of the burial of tubes on time:

Taðt; 0Þ ¼ �TT þ DT1 cosðX1t þ W1Þ þ DT2 cosðX2t þ W2Þ;
ð54Þ

Gðt; Z2Þ ¼ �TT þ DTgðZ0Þ cosðX2t þ Wgðz0ÞÞ; ð55Þ

where �TT is the mean yearly temperature of the air and

ground; DT1;W1 and DT2;W2 are the amplitudes and

phases of daily and yearly oscillations of the inlet air

temperature; DTg and Wg are the amplitude and phase of

yearly oscillations of the temperature of the ground at

the depth of the burial of tubes. The mean yearly
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temperatures of air and ground may differ by 1–3 �C
[27]. They are taken equal in model (54) and (55). In the

stationary regime of the temperature of the air that

passed through the tube the path of length y is

Taðt; 0Þ ¼ �TT þ DTgðz0Þ cosðX2t þ Wgðz0ÞÞ
þ DT1 expð�cX1

yÞ cosðX1t þ W1 � uX1
yÞ

þ DT3 expð�cX2
yÞ cosðX2t þ W3 � uX2

yÞ; ð56Þ

where

DT3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT 2

2 þ DT 2
g � 2DTgDT2 cosðW2 � WgÞ

q
; ð57Þ

W3 ¼ arctg½ðDT2 sinW2 � DTg sinWgÞ=ðDT2 cosW2

� DTg cosWgÞ�: ð58Þ

The quantities c and u are determined from formula

(31). The quantities SX1
and SX2

, contained in c and u,

are calculated with the aid of Eqs. (28) and (50), re-

spectively. The use of formula (56) allows one to eval-

uate the temperature of the air that leaves the heat

exchange at minimum machine time expenditures.

5. Results of calculations

The calculations were performed with the use of Eq.

(56) and also on the basis of the system of Eqs. (43),

(15), and (16) that allows one to find the mean daily

temperature of the escaping air. The temperature of the

air entering into the system was simulated by a sum of

the mean temperature and two cosinusoids with the

daily and yearly periods (54). The temperature of

ground calculated from Eqs. (17) and (18) with account

for the mean yearly temperature and one harmonic with

a yearly period had the form of Eq. (55). The average

annual temperatures of air and ground were taken equal

to 10 �C, the amplitude of annual variations of the air

temperature was assumed equal to 15 �C and of the

ground surface to 12 �C. The amplitude of the daily

variations of the air temperature was prescribed equal to

7 �C.

In the calculations given below we mainly used the

values of the parameters of one of the actual heat ex-

changers described in the literature [1]: tube length 23 m,

diameter 0.23 m, number of tubes 43, the burial depth 4

m, flow rate of air per one tube 407 m3=h.
Fig. 3 presents the results of calculations from the

system of Eqs. (43), (15), and (16) of the average daily

exit temperature of continuous heat exchangers con-

sisting of one and of an infinite number of tubes located

at a distance of 1 m. It is evident that the influence of the

neighboring tubes decreases the difference between the

inlet and exit temperatures, i.e., leads to the decrease of

the thermal power of the system per tube.

The results of the calculations with the use of Eq. (56)

that illustrate the degree of the fall of the peak values of

the average daily heat power in the stationary regime per

tube with a decreasing spacing between them is shown in

Fig. 4. These results practically do not depend on the

tube diameter. The reduction of the spacing between the

tubes to 1.5 m leads, depending on the air flow rate, to a

5–15% loss of the power by the system, while the re-

duction of the spacing to 1 m leads to a 10–25% loss

of the power by the system in comparison with the case

of an infinite spacing between the tubes. Since the case of

an infinite number of tubes gives the lower boundary of

heat power, the power per tube of the system consisting

from the finite number of tubes, lies between the cases of

one tube and an infinite number of tubes.

Fig. 5 presents the amplitudes of the early and daily

fluctuations of the heat power depending on the tube

length. For the tube of length 23 m the yearly amplitude

of the heat power attains 0.68 kW. The amplitude of

daily fluctuations of the power is equal approximately to

0.55 kW, which results in the value of the peak power of

the order of 1.2 kW nearly approximating the experi-

mentally obtained [1] maximum heat power of 1.3 kW

per tube. The data presented in Fig. 5 show that the

thermal efficiency of the ground heat exchanger in-

creases with the tube length attaining saturation at a

certain saturation length Lsat ¼ c�1
x depending on the

frequency of oscillations of the inlet temperature. The

saturation length characterizes the optimal (from the

point of view of heat exchange) length of the tube. Out

of the tubes that are much shorter than Lsat, air will

escape virtually with the same temperature at which it

enters. At the lengths of the tubes larger than Lsat, the

amplitude of the fluctuations of the difference of the

Fig. 3. Average daily temperature of air depending on time: (1)

temperature of the air entering the heat exchanger; (2) tem-

perature of the air leaving the heat exchanger that has an infi-

nite number of 1 m spaced tubes. Dashed curve, temperature of

the escaping air calculated without account for neighboring

tubes. Tube length 23 m, diameter 0.23 m, air flow rate

407 m3=h, depth of burial 4 m.
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temperatures of the outcoming air and ground close to

zero. The temperature of the air leaving the tubes with

the length Lsat corresponding to the frequency equal to

the reciprocal year is nearly the same as the temperature

of the nonperturbed ground. The temperature of the air

leaving from the tubes of the length Lsat that corresponds

to the frequency equal to the reciprocal days, will be

determined by the average daily temperature of the

ground. This temperature depends on the annual com-

ponent of the outer air temperature and virtually will

not experience fluctuations with a daily period. The ex-

pression for Lsat obtained with (41) taken into account

for low frequencies has the form

Lsat ¼ b�1 � pR2vqacað2pqcvÞ�1
ln½R

ffiffiffiffiffiffiffiffiffiffiffi
x=4v

p
�: ð59Þ

The graphs of the dependence of Lsat on the air flow rate

and diameter are presented in Fig. 6. From them it

follows that Lsat increases with increase in the flow rate

and at a constant air flow rate does not almost depend

on the tube diameter.

From Fig. 6 and Eq. (59) it is seen that the saturation

length Lsat exceeds the relaxation length b�1 over which

the air temperature becomes nearly equal to the tem-

perature of the tube wall on condition that the temper-

ature of the wall is fixed. The thing is that with the

beginning of the operation of the system the tube wall

temperature ceases to be equal to the nonperturbed

termperature of the ground and begin to partially follow

the air flow temperature. As a result the intensity of heat

exchange between the air in the tube and the ground is

decreased, and this leads to the increase in the distance

at which the amplitude of the air temperature fluctua-

tions may decrease markedly. We note that for a system

of many tubes the length of saturation is larger than for

a single tube.

Fig. 7 presents the dependence of the amplitude of

fluctuations of the average daily heat energy on the air

Fig. 5. Amplitude of fluctuations of the heat power of a heat

exchanger depending on the length of a tube: (1) seasonal av-

erage daily; (2) during 24 h. Tube diameter 0.23 m; air flow rate

407 m3=h, depth of burial 4 m.

Fig. 6. Dependence of the saturation length (curves 1, 2) and of

the characteristic length of thermal interaction (curve 3) on the

air flow rate for a tube of diameter 0.25 m (a) and on the tube

diameter at the air flow rate equal to 500 m3=h (b) for the

frequency of temperature fluctuations equal to (1) reciprocal

year, (2) reciprocal day.

Fig. 4. Percentage of decrease in the heat power of a heat ex-

changer depending on the space between tubes at different air

flow rates: (1) 100 m3=h; (2) 407 m3=h; (3) 1500 m3=h. Tube

length is 23 m, diameter 0.23 m; depth of burial 4 m.

2416 V.P. Kabashnikov et al. / International Journal of Heat and Mass Transfer 45 (2002) 2407–2418



flow rate. It is seen that the indicated value increases

with the air flow rate and the difference between the inlet

and outlet temperature decreases in this case. The vari-

ation of the diameter of the tubes from 0.1 to 0.4 m

changes the results a little.

Fig. 8 presents the time dependence of the average

daily power, calculated from the system of Eqs. (43),

(15), (16) per tube for the heat exchanger operating in

the warming period from October to March for 10 years.

In contrast to the case of continuously operating system,

when the loss of heat in winter by the ground is com-

pensated by the pumping in summer, the energy is

evacuated in this case only. The amount of the energy

pumped out for the season is somewhat decreased with

time, but after a period of time of the order of 3–4 years

a quasi-stationary regime sets in. It is seen that the heat

exchanger with the parameter used here [1] can operate

infinitely long without substantial deterioration of its

properties.

6. Conclusions

An effective mathematical model has been developed

for calculating the temperature of the ground and air in

a ground heat exchanger for ventilation systems. The

model is based on the representation of temperature in

the form of the Fourier integral. For high-frequency

components with characteristic times of the order of 24

h an analytical solution has been used. The calculation

of the low-frequency components with the characteristic

times of the order of a year is based on modelling a tube

with a linear heat source. There is a region of frequencies

where both limits are valid, and this provides smooth

joining of solutions. The mathematical model gives re-

sults for two extreme cases: one and an infinite number

of tubes. It is valid for burial depths exceeding 2 m,

starting from which the heat power of the system ceases

to depend on the power exchange by the ground surface

with the surrounding medium. In this case, to calculate a

heat exchanger it is necessary to know the thermo-

physical parameters of the ground and of the nonper-

turbed temperature of the ground at the depth of the

burial of tubes. The latter temperature can be obtained

by carrying out field measurements.

In the present work an analytical expression was

obtained for the optimal, from the point of view of heat

exchange of air with the ground, tube length. The degree

of decrease in the efficiency of the heat exchanger on

decrease of the spacing between the tubes was calcu-

lated, as well as the dependence of the heat power of the

system on time during its operation only in winter for

the period of 10 years. Also given are the dependences of

the heat power of the system on the length and diameter

of tubes, depth of their burial, and air flow rate. The

results of calculations agree with the experimental data.

The procedure developed does not require cumbersome

calculations and can be used for working out design

recommendations.
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